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ABSTRACT

The properties (spatial orthogonality and temporal uncorrelatedness) of orthogonally-

rotated empirical modes depend on the normalization of the modes, prior to rotation. It

is shown here that these properties also depend on how the empirical modes are formu-

lated. The preferred convention is one that allows us to reconstruct the data from the

unrotated or rotated modes. When the empirical modes are normalized so that the spa-

tial eigenvectors are unit length (i.e. EOFs), the rotated modes preserve spatial orthog-

onality but are no longer temporally uncorrelated. Relaxing the temporal orthogonality

in this way does not prejudice conclusions that can be inferred regarding the temporal

couplings of the rotated modes.

KEY WORDS: Orthogonal rotation; principal component analysis; empirical orthog-

onal function analysis; eigenvector analysis; empirical modes; global mode(s); climate

variable(s)
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1. Introduction

Empirical orthogonal function (EOF) analysis and principal component (PC) analysis

(PCA) have become standard statistical techniques in the geophysical sciences of

meteorology and oceanography (e.g. Preisendorfer, 1988; Emery and Thompson, 1997)

particularly in the area of climate research (Peixoto and Oort, 1992; von Storch and

Zwiers, 1999). These eingentechniques allow us to represent the spatial and temporal

variability of climate variables such as temperature as a number of \empirical modes".

Because most of the variance in the data can generally be captured by a small number

of modes, the decomposition may be useful in interpreting the variability in the data.

Each empirical mode is formed by a space pattern and a time series which are derived

from the eigenvalues and eigenvectors of the covariance (or correlation) matrix. These

functions are de�ned to be orthogonal in space and time. Because they are designed to

e�ciently describe the variance in the whole dataset, they usually do not represent a

large fraction of the variance in a given spatial and temporal subdomain. Typically, as

the space-time subdomain is expanded in comparison with the spatial and temporal

scales of the dominant physical processes within the subdomain, one or more of the

leading modes may capture signi�cant features in di�erent subdomains but with less

explained subdomain variance. In these circumstances the temporal variability of the

mode will not be highly representative of the dominant physical processes of such space-

time subdomains, making those processes more di�cult to assess.

The tendency of the empirical modes to extract poorly representative commonality

among subdomains of large datasets can be remedied by grouping the variance through

a rotation procedure. A variety of such procedures are available (Richman, 1986),

however, the rotation technique most commonly used to group the variability in

geophysical applications is the varimax orthogonal rotation. Rotations have been widely

used in meteorology where long records of global scale observations are common, but

not yet in oceanography.
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In general, a rotation is a linear transformation of the modes that attempts to �nd

a new location for the coordinate axis such that projections of the variable onto those

axes simplify the spatial or temporal structure of the modes. A detailed discussion of the

advantages and disadvantages of rotated empirical modes is given by Richman (1986)

(see also Jolli�e, 1987 and Richman, 1987). In most applications the rotation is used

to simplify the spatial structure by isolating regions with similar temporal variability

(e.g. Horel, 1981; Kawamura, 1994; Barnston and Livezey, 1987; Mestas-Nu~nez and

En�eld, 1999). The resulting rotated space patterns are generally more robust (i.e. less

sensitive to sampling errors) than their unrotated counterparts (Cheng et al., 1995).

Alternatively, the rotation can also be used to simplify the temporal structure by

isolating time periods with similar space patterns (e.g. Fern�andez Mills, 1995).

An aspect of rotation that has lead to some apparent confusion in the literature

concerns the orthogonality properties of orthogonally rotated empirical modes. This

applies to varimax as well as other orthogonal rotations. Jolli�e (1995) showed that it

is impossible to preserve both spatial orthogonality and temporal uncorrelatedness of

the modes after an orthogonal rotation { temporal uncorrelatedness is equivalent to

temporal orthogonality when the temporal mean is removed from the data, which is

generally the case. He pointed out that which of these properties is preserved depends

on the choice of the normalization constraint imposed on the (unrotated) modes.

Furthermore, he stated that the usual normalization which multiplies the unit length

eigenvectors by the square root of the eigenvalues (i.e. PCA) leads to rotated modes

that possess neither property. This seems to contradict the common concept that when

this normalization is used, orthogonal rotations lead to modes that are temporally

uncorrelated (orthogonal) (e.g. Horel, 1981; Walsh et al., 1982; Easterling, 1991).

The goal of this study is to clarify the apparent confusion found in the literature

regarding the orthogonality properties of the rotated empirical modes. It is shown that

this confusion arises from not realizing that the properties of the rotated modes depend
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not only on the normalization constraint imposed on the unrotated modes as noted by

Jolli�e (1995), but also on the way in which the modes are formulated.

Section 2 reviews the formalism and presents two common formulations of the

empirical modal decomposition. The normalized and orthogonally rotated versions

of these two modal formulations are introduced in sections 3 and 4, respectively. In

section 5, we show the e�ect of three di�erent normalizations on the orthogonality

properties of the rotated modes using the two modal formulations. In section 6, we

give an example that illustrates the usefulness of rotation in relaxing the temporal

orthogonality constraint of the unrotated modes. The paper ends with a summary and

a discussion of other applications in section 7.

2. Formalism

The formalism of the empirical modes can be written using the singular value

decomposition (SVD) of a matrix (Rasmusson et al., 1981; Kelly, 1988). Let us consider

a set of time series of length N at P di�erent locations and with the temporal mean

removed at every grid point. These time series can be combined to form an N � P

matrix of data X, whose number of rows N is the number of temporal points and the

number of columns P is the number of spatial points. The SVD of X (e.g. Lawson and

Hanson, 1995; Golub and Van Loan, 1996) is given by

X = USAT : (1)

The matrixes U and A are both orthonormal because they satisfy the following

orthogonality properties UTU = I and ATA = I where I is the identity matrix. The

diagonal matrix S is formed with the singular values which are the square root of the

eigenvalues of the coupled eigenvalue problems XXTU = US2 and XTXA = AS2.

Thus A and U are the eigenvectors of the scatter matrix XTX (Preisendorfer, 1988)

and its transpose XXT , respectively { the scatter matrix XTX is proportional to the

covariance matrix C (i.e. XTX = NC).
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Equation (1) allows us to formulate the modal decomposition as (e.g. Jolli�e, 1995)

Z = XA (analysis) (2)

or equivalently (e.g. Richman, 1986)

X = ZAT (synthesis) (3)

where A are the space patterns and Z = US are the time series. Equations (2) and (3)

are respectively the \analysis" and \synthesis" formulas of Preisendorfer (1988).

The orthogonality properties of the unrotated modes in equations (2) and (3) follow

from the properties of U and A. The modal space patterns (A) and time series (Z) are

respectively orthogonal in space and time because ATA (= I) and ZTZ (= S2) are

both diagonal. Furthermore the modes are also temporally uncorrelated because they

are orthogonal in time and have zero temporal mean. The modes have zero temporal

mean because the temporal mean of the data was removed before forming X (see section

2). The scatter (= N� variance) of the modes are given by the square singular values,

which are the eigenvalues of the scatter matrix (or its transpose) derived from (1).

3. Normalization

It is clear from equation (1) that there is not a unique way of constructing the space

patterns and time series of the empirical modes. In fact there are an in�nite number of

possibilities depending on how S is combined with U and A. In equations (2) and (3)

the singular values were grouped with the temporal eigenvectors (i.e. US). However, one

could have combined the singular values with the spatial eigenvectors (i.e. SAT ) or even

with both spatial and temporal eigenvectors simultaneously (e.g. US1=2 and S1=2AT ).

When U and/or A are multiplied by a diagonal matrix (e.g. S 6= I) the resulting matrix

is no longer orthonormal. Therefore the di�erent ways in which the orthogonal modes

can be constructed result in di�erent normalizations and in di�erent orthogonality

properties.
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To investigate the e�ect of various normalizations on the properties of the rotated

orthogonal modes, a diagonal normalization matrix K is introduced. This allows us to

write normalized versions of equations (2) and (3). The normalized analysis equation is

constructed by right multiplying (2) with the diagonal matrix K to obtain

bZ = X bA (analysis) (4)

where bZ = ZK = USK and bA = AK. Right multiplying Z in (3) with the identity

matrix I = K�1K gives the normalized synthesis equation

X = eZ eAT (synthesis) (5)

where eZ = ZK�1 = USK�1 and eA = bA = AK. An advantage of (5) is that allows us to

recover the data matrix by straightforward multiplication of the normalized modes.

4. Rotation

The rotated modes are a linear transformation of the unrotated modes de�ned by

an orthogonal, square matrix T also referred to as the rotation matrix. Because T is

orthogonal and square it satis�es

T TT = TT T = I:

Using the rotation matrix T one can write rotated versions of equations (4) and (5). The

rotated form of (4) is obtained by right multiplying it by T to get

bZ� = X bA� (analysis) (6)

where bA� = bAT are the rotated spatial patterns and bZ� = bZT are the rotated time

series { note that commonly T is applied only to a subset of the leading empirical

modes.

Right multiplying eZ in (5) by the identity matrix I = TT T gives the rotated form of

equation (5)

X = eZ�
eA�T (synthesis) (7)
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where eZ� = eZT and eA� = eAT . Equation (7) shows that in this case, as in (5), the data

matrix can also be reconstructed by simple matrix multiplication of the rotated modes.

5. Orthogonality

The orthogonality properties of the normalized modes in the analysis (4) and synthesis

(5) formulations (see Appendix for derivation) are bAT bA = K2; bZT bZ = KS2K and

eAT eA = K2; eZT eZ = K�1S2K�1; respectively. Similarly, the orthogonality properties

of the rotated modes in both formulations (equations (6) and (7)) are bA�T bA� =

T TK2T; bZ�T bZ� = T TKS2KT ; and eA�T eA� = T TK2T; eZ�T eZ� = T TK�1S2K�1T ;

respectively.

The orthogonality properties of the unrotated and rotated modes for the normalized

forms of the analysis and synthesis formulations and three cases of the normalization

matrix K (i.e. K = S, K = I and K = S�1) are summarized in Table 1. The

cases K = S and K = I (columns 1 and 2) are the most common choices for K in

meteorology and oceanography (e.g. Preisendorfer, 1988). The case K = S de�nes

the PCA model which weights the eigenvectors with the singular values { in the PCA

model the space patterns represent covariances (correlations) between each variable

and each empirical mode. Similarly, the case K = I de�nes the EOF or unit length

eigenvector model. Note that in this paper, the EOF and PCA models arise through

particular choices of the normalizations as in Jolli�e (1987). The more unusual K = S�1

case (column 3) in which all the time series for the normalized form of (2) ( bZ) have unit

scatter (see row 2) is included for comparison with the results of Jolli�e (1995).

Rows 1-4 show that the normalization (equations (4) and (5)) of the analysis and

synthesis formulations (equations (2) and (3)) do not alter the properties of the modes

described in section 2. Therefore the normalized modes are orthogonal in space and

uncorrelated in time.

Rows 5 and 6 summarize the orthogonality properties of the rotated modes for the

analysis formulation given by equation (2), and in normalized form by equation (4), for
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the three choices of the normalization matrix. These results correspond to the three

cases discussed by Jolli�e (1985). Column 1 shows that for K = S, which is the

default option in some computer packages, neither spatial orthogonality nor temporal

uncorrelatedness are preserved by an orthogonal rotation. Columns 2 and 3 show

that K can be chosen so that an orthogonal rotation preserves orthogonality in space

(K = I, column 3) or uncorrelatedness in time (K = S�1, column 4), but not both

simultaneously.

The last two rows (7 and 8) show the orthogonality properties for the synthesis

formulation given by equation (3), and in normalized form by equation (5), for the three

choices of the normalization matrix. As noted in sections 3 and 4, this convention is

preferred because the data matrix can be reconstructed directly from the unrotated or

rotated modes (equations (5) and (7)). With this convention, the most common choices

of the normalization matrix (K = S and K = I) preserve at least one of the properties

of the unrotated modes after an orthogonal rotation. The choice K = S (PCA)

preserves orthogonality in time but not in space (column 1). The choice K = I (EOF

analysis), which is the most common in oceanography (e.g. Emery and Thompson,

1997), preserves orthogonality in space but not in time (column 2). Finally, the more

unusual K = S�1 case does not preserve either property (column 3).

6. Example

In the following example we compare rotated PC (RPC) and rotated EOF (REOF)

analyses focusing on the relaxation of the temporal orthogonality constraint of the

unrotated modes. The dataset used is the global monthly reconstruction of 1856{

1991 sea surface temperature (SST) anomalies generated by Kaplan et al. (1999) in

a 5� � 5� grid. En�eld and Mestas-Nu~nez (1999) used this dataset to estimate and

remove a global El Ni~no{Southern Oscillation (ENSO) mode based on a complex EOF

representation which allowed for phase propagation. The variability of the non-ENSO

residual data, with scales shorter than 1.5 years and a linear trend removed at every
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grid point, was then studied using EOFs (En�eld and Mestas-Nu~nez, 1999) and REOFs

(Mestas-Nu~nez and En�eld, 1999). Here we compare some of the Mestas-Nu~nez and

En�eld REOF results with the results of a RPC analysis applied to the same dataset.

We �rst calculated the empirical modes of the low-passed and detrended non-ENSO

SST anomalies using the synthesis formulation of the PC model. This was done by

decomposing the data as in (5) using a SVD routine and a normalization matrix K = S.

We then rotated the �rst ten normalized spatial eigenvectors using a varimax orthogonal

rotation. The space patterns and the time series of the resulting RPCs will therefore

satisfy equation (7). The modal distribution of global (low-passed and detrended) non-

ENSO SST anomaly variance explained by the RPCs is shown in the right column of

Table 2. For comparison we also show the distribution of variance of the unrotated

modes (left column) and of the REOFs (center column) as shown in Table 1 of Mestas-

Nu~nez and En�eld (1999). Table 2 shows that the distributions of variance explained

by the REOFs and RPCs, which is proportional to the eigenvalues or square singular

values, are very similar.

We found that every RPC mode has a corresponding REOF mode in the Mestas-

Nu~nez and En�eld study but their order (i.e. in terms of the global variance explained

in Table 2) is slightly di�erent: RPC1 (see Fig. 1) is the North Atlantic multidecadal

mode (REOF1), RPC2 is the eastern North Paci�c interdecadal mode (REOF2),

RPC3 is the central tropical Paci�c decadal mode (REOF4), RPC4 is the eastern

tropical Paci�c decadal mode (REOF3), RPC5 is the North Paci�c multidecadal mode

(REOF5), and RPC6 is the South Atlantic interannual mode (REOF6).

The spatial and temporal structures of REOF1 and RPC1 describing the North

Atlantic multidecadal mode, are compared in Fig. 1. The bottom panel shows that the

temporal SST anomaly reconstructions in the index area (rectangular box) using RPC1

(thick) and REOF1 (thin) are very similar { the correlation coe�cient between the two

time series is 0.96. The spatial structure of RPC1 (Fig. 1, upper) is very similar to the
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space pattern of REOF1 of Mestas-Nu~nez and En�eld (1999). The di�erences between

the RPC and REOF space patterns (Fig. 1, middle) are generally smaller than 30% of

the average response in the index area. Similarly, we compared RPC and REOF modes

2 through 6 (not shown) and found very close agreement between their spatial and

temporal structures.

Because the temporal orthogonality of the PCs is preserved by an orthogonal rotation,

the cross-correlations between the RPC time series is zero. This suggests that the North

Atlantic (RPC1) and South Atlantic (RPC6) modes and the North Paci�c (RPC5) and

central tropical Paci�c (RPC3) modes are temporally uncoupled. However, Table 1

shows that when the orthogonal rotation is applied to the EOFs (instead of the PCs)

the temporal orthogonality is relaxed and the time series are no longer constrained to

be uncorrelated. In fact, as shown in Table 5 of Mestas-Nu~nez and En�eld (1999), the

cross-correlation between the North and South Atlantic REOFs is 0.02 and between the

North and central equatorial Paci�c REOFs is -0.4. This led Mestas-Nu~nez and En�eld

(1999) to conclude that the North and South Atlantic modes of non-ENSO variability

may indeed be independent (see also En�eld et al., 1999) but the North Paci�c and

central tropical Paci�c modes may not.

7. Summary and discussion

An apparent confusion found in the literature regarding the orthogonality properties

of orthogonally rotated empirical modes is clari�ed. It is shown that the confusion

arises from using two (equivalent) formulations of the modal decomposition de�ned by

the analysis (2) and synthesis (3) equations. These two formulations lead to respective

normalized forms of the analysis (4) and synthesis (5) equations. The normalized form

of the analysis formulation (4) consists of multiplying both the space patterns and time

series by the normalization matrix K. The normalized form of the synthesis formulation

(5) consists of multiplying the space patterns by K and the time series by K�1. The

synthesis formulation is preferred because it allows us to recover the data matrix by
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direct multiplication of the unrotated or rotated modes. Along with the two normalized

forms of the modal decomposition, three possible choices of the normalization matrix K

were considered. These choices of K include two commonly used cases in oceanography

and meteorology (K = S which de�nes the PCA model and K = I which de�nes the

EOF model) and one more unusual case considered by Jolli�e (1995) (K = S�1).

Using the normalized form of the analysis formulation given by (4) and the three

choices of K, the spatial orthogonality and temporal uncorrelatednes properties of the

rotated modes presented by Jolli�e (1995) were reproduced. Brie
y, K = S (PCA

model, the default case in some computer packages) preserves neither property, K = I

(EOF model) preserves only spatial orthogonality, and K = S�1 preserves only temporal

uncorrelatedness. In contrast, using the normalized form of the synthesis formulation

given by (5) leads to di�erent properties { except of course for K = I. Brie
y, K = S

(PCA model) preserves only temporal uncorrelatedness and K = S�1 preserves neither

property.

As noted above, when an orthogonal rotation is applied to the synthesis formulation

(5) of the PCA model (K = S) the orthogonality is preserved in time but relaxed in

space. This choice is useful to avoid getting predictable space patterns for the second

and higher modes when the leading space pattern is known. For example, when the

leading space pattern has the same sign over all the domain { as is the case of El

Ni~no-Southern Oscillation (ENSO) in the tropics { one generally expects that the

second space pattern will have a zero crossing near the maximum of the leading mode.

Applications that used this approach to avoid getting predictable higher order patterns

include Houghton and Tourre (1992) and Kawamura (1994). Other applications of this

approach can be found in the study of atmospheric circulation patterns. These are based

on the apparent property of atmospheric modes to be approximately uncorrelated in

time and not necessarily orthogonal in space (Horel, 1981; Barnston and Livezey, 1987).
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When an orthogonal rotation is applied to the EOF or unit eigenvector model

(K = I), independently of using the analysis or synthesis formulations, the spatial

orthogonality is preserved but the temporal uncorrelatedness is not. This is useful

when using the rotated modes to de�ne regional temporal indexes because they are not

constrained to be uncorrelated in time. This approach has the e�ect of not prejudicing

conclusions regarding the possibility of temporal couplings between the rotated modes,

especially those representing subregions of the same ocean basin. An application of the

rotated EOF approach (Mestas-Nu~nez and En�eld, 1999; see also En�eld et al., 1999)

and how it compares to a rotated PCA approach, was illustrated with an example using

a global SST anomaly dataset (section 6).
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APPENDIX

Derivation of the Orthogonality Properties

The orthogonality properties of the normalized modes given by equations (4) and (5)

are

bAT
bA = KATAK = K2;

bZT
bZ = KSUTUSK = KS2K;

and

eAT
eA = bAT

bA = K2;
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eZT
eZ = K�1SUTUSK�1 = K�1S2K�1;

respectively.

Similarly, the orthogonality properties of the rotated modes given by (6) and (7) are

bA�T
bA� = T T

bAT
bAT = T TK2T;

bZ�T
bZ� = T T

bZT
bZT = T TKS2KT ;

and

eA�T
eA� = T T

eAT
eAT = T TK2T;

eZ�T
eZ� = T T

eZT
eZT = T TK�1S2K�1T ;

respectively.
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TABLE 1. Orthogonality properties of unrotated and rotated empirical modes from the

analysis and synthesis formulations for three di�erent values of the normalization matrix

K.

K = S (PCA) K = I (EOF) K = S�1

bAT bA S2 I S�2

bZT bZ S4 S2 I

eAT eA S2 I S�2

eZT eZ I S2 S4

bA�T bA� T TS2T I T TS�2T
bZ�T bZ� T TS4T T TS2T I

eA�T eA� T TS2T I T TS�2T
eZ�T eZ� I T TS2T T TS4T
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TABLE 2. Percentage of low-passed and detrended SST anomaly variance explained by

the �rst 10 unrotated and rotated non-ENSO modes.

Mode Unrotated REOFs RPCs

1 12.6 7.3 7.8

2 11.1 7.1 7.3

3 7.2 6.9 7.2

4 5.3 6.9 6.8

5 5.0 6.1 5.9

6 4.2 5.5 5.8

7 3.9 5.2 5.1

8 3.3 5.2 4.8

9 3.0 4.3 4.1

10 2.9 4.2 3.9

Total 58.6 58.6 58.6
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Figure Captions

FIG. 1. Comparison of the �rst mode of the rotated PC (RPC) and EOF (REOF)

analyses of the non-ENSO residual data set, describing the North Atlantic multidecadal

mode. Upper: Spatial distribution of the response with respect to the RPC modal

reconstruction over the index region (rectangle); contour interval is 40 and a score of 100

is the average response over the index region. Regions with scores greater than 40 are

shaded. Middle: Di�erence between the RPC1 space pattern (upper) minus the REOF1

space pattern (shown in Fig. 1 of Mestas-Nu~nez and En�eld, 1999); contour interval is

10 and negative contours are dashed. Lower: The thick (thin) line indicates the temporal

reconstruction of the RPC1 (REOF1) mode related variability averaged over the index

region.
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